$$(L\varphi_{2},\varphi_{1}) = \int_{0}^{1} (4x^{3} + 6x + 8)(x^{2} - 3)dx = -31,16667;$$

$$(L\varphi_{1},\varphi_{2}) = \int_{0}^{1} (2x^{2} + 8)(x^{3} - 4)dx = -32,33333;$$

$$(L\varphi_{2},\varphi_{2}) = \int_{0}^{1} (4x^{3} + 6x + 8)(x^{3} - 4)dx = -44,22857;$$

$$(f - L\varphi_{0},\varphi_{1}) = \int_{0}^{1} (2x^{2} + 8)(x^{2} - 3)dx = -22,93333;$$

$$(f - L\varphi_{0},\varphi_{2}) = \int_{0}^{1} (2x^{2} + 8)(x^{3} - 4)dx = -32,33333.$$

Окончательно получаем

$$22,93333 \cdot a_1 + 31,16667 \cdot a_2 = 22,93333;$$

 $32,33333 \cdot a_1 + 44,22857 \cdot a_2 = 32,33333.$

Отсюда $a_1 = 1$, $a_2 = 0$.

3. Приближенное решение краевой задачи $\hat{y}_2(x) = x^2 - 2x + 1$. ■

7.4. МЕТОДЫ СВЕДЕНИЯ КРАЕВОЙ ЗАДАЧИ К ЗАДАЧЕ КОШИ

7.4.1. МЕТОД СТРЕЛЬБЫ

Суть этого метода заключается в сведении решения краевой задачи к многократному решению задачи Коши. Принцип построения метода стрельбы рассмотрим на примере нелинейной краевой задачи:

$$y'' = f(x, y, y'), \quad a \le x \le b;$$
 (7.25)

$$y(a) = A, \ y(b) = B,$$
 (7.26)

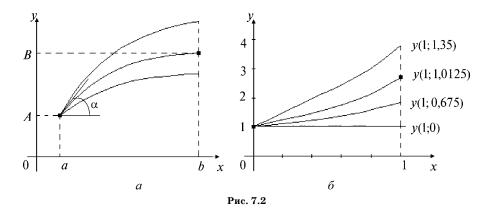
где f(x, y, y') — нелинейная функция, обусловливающая нелинейность дифференциального уравнения (7.25).

При введении новой переменой z = y' уравнение (7.25) записывается в нормальной форме Коши, а краевые условия видоизменяются:

$$y' = z, y(a) = A;$$

 $z' = f(x, y, z), z(a) = \eta,$ (7.27)

где $\eta = y'(a) = \lg \alpha$ — параметр, равный тангенсу угла наклона интегральной кривой в точке x = a. Угол α (параметр η) в процессе многократного решения краевой задачи должен принять такое значение, чтобы интегральная кривая «попала в цель», т. е. в точку (b, B) (рис. 7.2a). В общем случае полученное



при некотором значении η решение $y(x; \eta)$ не будет удовлетворять условию $y(b; \eta) = B$ на правом конце отрезка.

Следовательно, требуется найти такое значение параметра η, чтобы оно было корнем нелинейного уравнения

$$\Phi(\eta) = y(b; \eta) - B = 0.$$

Для решения этого уравнения, как правило, используются методы половинного деления (см. п. 3.1.3) или секущих (см. п. 3.1.7).

В случае использования метода половинного деления сначала делают «пробные» выстрелы при выбранных наугад или в соответствии с некоторым алгоритмом значениях η до тех пор, пока среди значений $\Phi(\eta)$ не окажется двух противоположных по знаку. Им соответствует начальный интервал неопределенности, который далее последовательно сокращается путем деления пополам.

При применении метода секущих используется формула

$$\eta^{(k+1)} = \eta^{(k)} - \frac{\Phi(\eta^{(k)}) \cdot [\eta^{(k)} - \eta^{(k-1)}]}{\Phi(\eta^{(k)}) - \Phi(\eta^{(k-1)})}, \quad k = 1, 2, ...,$$

где $\eta^{(0)}$, $\eta^{(1)}$ — начальные значения параметра; k — номер итерации. Итерации прекращаются при выполнении условия окончания $|\Phi(\eta^{(k)})| \le \varepsilon$ или $|\eta^{(k+1)} - \eta^{(k)}| \le \varepsilon$ с некоторым положительным ε , характеризующим точность решения задачи.

Замечание. Точность решения краевой задачи зависит не только от точности определения параметра η , но также и от точности решения соответствующей задачи Коши. Поэтому одновременно с уточнением параметра η рекомендуется уменьшать шаг при решении задачи Коши, либо выбирать более точный метод.

Рассмотрим применение метода стрельбы для решения линейной краевой задачи (7.3), (7.4):

$$y'' + p(x)y' - q(x)y = f(x), \quad a \le x \le b;$$

 $\alpha_0 y(a) + \beta_0 y'(a) = A;$
 $\alpha_1 y(b) + \beta_1 y'(b) = B.$

Методика решения линейной краевой задачи

1. Решить две задачи Коши

$$y'' + p(x)y' - q(x)y = f(x), \ a \le x \le b$$
 (7.28)

при условии

$$\alpha_0 y(a) + \beta_0 y'(a) = A,$$
 (7.29)

а именно, при $\beta_0 \neq 0$ задается $y(a) = \eta$, тогда $y'(a) = \frac{A - \alpha_0 \eta}{\beta_0}$, а при $\beta_0 = 0$ задается $y'(a) = \eta$ и тогда $y(a) = \frac{A}{\alpha_0}$ с разными произвольными значениями η , т. е. $\eta = \eta^{(0)}$ и $\eta = \eta^{(1)}$.

2. Найти значения $\Phi(\eta^{(0)})$, $\Phi(\eta^{(1)})$ функции $\Phi(\eta) = \alpha_1 \cdot y(b; \eta) + \beta_1 \cdot y'(b; \eta) - B$ и новое значение параметра:

$$\eta^{(2)} = \eta^{(1)} - \frac{\Phi(\eta^{(1)}) \cdot [\eta^{(1)} - \eta^{(0)}]}{\Phi(\eta^{(1)}) - \Phi(\eta^{(0)})}.$$

3. Решить краевую задачу (7.28), (7.29) при $\eta = \eta^{(2)}$. В результате получится приближенное решение исходной линейной краевой задачи, точность которого определяется точностью решения задачи Коши при значении $\eta = \eta^{(2)}$.

Таким образом, в силу линейности поставленной краевой задачи соответствующая задача Коши решается только три раза.

Пример 7.5. Методом стрельбы найти приближенное решение нелинейной краевой задачи

$$yy'' - y'^2 = 0$$
, $y(0) = 1$, $y(1) = 2.718$.

Соответствующую задачу Коши решить явным методом Эйлера с шагом h=0.01, а параметр η вычислить методом половинного деления.

ПЗададим начальные значения параметра η : $\eta^{(0)} = 0$, $\eta^{(1)} = 1,35$, которые обеспечивают разные по знаку значения функции $\Phi(\eta)$. Они являются соответственно левым и правым концами начального интервала неопределенности. Согласно методу половинного деления будем делить текущий интервал пополам и в качестве нового интервала выбирать тот, на концах которого функция $\Phi(\eta) = y(1,\eta) - 2,718$ имеет разные знаки. Процедуру поиска завершим при выполнении условия $|\eta^{(k+1)} - \eta^{(k)}| \le \varepsilon$, где положим $\varepsilon = 0,01$.

Для применения явного метода Эйлера (6.19) уравнение следует переписать в форме $y'' = \frac{{y'}^2}{y}$, а затем с помощью введения новой переменной z = y' — в виде (7.27):

$$y' = z$$
, $y(0) = 1$;
 $z' = \frac{z^2}{y}$, $z(0) = \eta$.

Результаты интегрирования явным методом Эйлера с шагом h = 0.01 с параметром η , определяемым методом половинного деления, приведены в таблице 7.3. Четыре первых решения $y(x, \eta)$ изображены на рисунке 7.26.

Последний интервал неопределенности удовлетворяет условию окончания процесса: $|1,0125-1,002734375|=0,009765625<\epsilon=0,01$. Полученное приближенное решение приведено в таблице 7.4.

Пример 7.6. Найти приближенное решение краевой задачи

$$y'' + y = -x$$
, $0 \le x \le 1$;
 $y(0) = 0$, $y(1) = 0$

методом стрельбы.

 \square В поставленной задаче $a=0,\ b=1,\ p(x)=0,\ q(x)=-1,\ f(x)=-x,\ \alpha_0=1,$ $\beta_0=0,\ A=0,\ \alpha_1=1,\ \beta_1=0,\ B=0.$ Точное решение найдено в примере 7.1.

Таблица 7.3

k	$\eta^{(k)}$	$y(1, \eta^{(k)})$	$\Phi(\eta^{(k)})$
0	0	1,000000	-1,718000
1	1,35	3,822746	1,104700
2	0,675	1,959583	-0,758417
3	1,0125	2,738495	0,020495
4	0,84375	2,316000	-0,402000
5	0,934375	2,534000	-0.184000
6	0,9734375	2,634597	-0,083403
7	0,99296875	2,686050	-0,031950
8	1,002734375	2,712146	-0,005850

T a блица 7.4

x_i	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
$\hat{m{y}}_i$	1	1,105	1,2208	1,3489	1,4905	1,6468	1,8196	2,0106	2,2215	2,4546	2,7121

Таблица 7.5

η	η ⁽⁰⁾	= 1	$\eta^{(1)} = -1$		$\eta^{(2)} = 0,18249$		
x_i	$\hat{y}(x_i)$	$\hat{z}(x_i)$	$\hat{y}(x_i)$	$\hat{z}(x_i)$	$\hat{y}(x_i)$	$\hat{z}(x_i)$	
0	0	1	0	-1	0	0,18249	
0,1	$9,976\cdot 10^{-2}$	0,9910	$9,9999 \cdot 10^{-2}$	-1	$1,81074 \cdot 10^{-2}$	0,17774	
0,2	0,1977231	0,9620968	-0.2	-1	$3,51523 \cdot 10^{-2}$	0,16008	
0,3	0,2919084	0,9135469	-0,3	-1	$4,99637 \cdot 10^{-2}$	0,13138	
0,4	0,3803712	0,8458201	-0,4	-1	6,13916 · 10-2	$9,13343\cdot 10^{-2}$	
0,5	0,4612217	0,7595744	-0.5	-1	$6,83188 \cdot 10^{-2}$	$4,03417 \cdot 10^{-2}$	
0,6	0,5326446	0,6556531	-0,6	-1	$0,06967 \cdot 10^{-2}$	$-2,11013\cdot 10^{-2}$	
0,7	0,5929167	0,5350776	-0.7	-1	$6,44322 \cdot 10^{-2}$	$-9,23912\cdot 10^{-2}$	
0,8	0,6404248	0,399037	-0,8	-1	$5,16459 \cdot 10^{-2}$	-0,17285	
0,9	0,6736817	0,2488741	-0,9	-1	$3,04335 \cdot 10^{-2}$	-0,261608	
1,0	0,691341	$8,6077 \cdot 10^{-2}$	-1	-1	$-8,22125\cdot 10^{-7}$	-0.35786	

Так как задача линейная, то воспользуемся приведенной выше методикой.

1. Решим задачу Коши с начальными условиями, соответствующими случаю $\beta_0 = 0$:

$$y'' + y = -x$$
, $0 \le x \le 1$;
 $y(0) = \frac{A}{\alpha_0} = 0$, $y'(0) = \eta$

при двух значениях параметра η : $\eta^{(0)} = 1$ и $\eta^{(1)} = -1$. Для этого применим явный метод Эйлера с шагом h = 0,01. Исходное уравнение с учетом обозначений z = y' предварительно запишем в форме системы

$$y' = z$$
, $y(0) = 0$;
 $z' = -y - x$, $z(0) = \eta$.

Численные результаты приведены в таблице 7.5.

2. Запишем функцию

$$\Phi(\eta) = \alpha_1 \cdot y(b; \eta) + \beta_1 \cdot y'(b; \eta) - B = 1 \cdot y(1; \eta) + 0 - 0 = y(1; \eta).$$

Найдем значения $\Phi(\eta^{(0)}) = y(1;1) = 0.691341$ и $\Phi(\eta^{(1)}) = y(1;-1) = -1$, а затем

$$\eta^{(2)} = \eta^{(1)} - \frac{\Phi(\eta^{(1)}) \cdot [\eta^{(1)} - \eta^{(0)}]}{\Phi(\eta^{(1)}) - \Phi(\eta^{(0)})} = -1 - \frac{-1 \cdot (-2)}{-1,69134} = 0,18249.$$

3. Приближенное решение исходной задачи определяется решением задачи Коши с $\eta^{(2)} = 0.18249$ (две правые колонки в табл. 7.5). Сравнивая его с решением примера 7.1, можно сделать вывод о близости данного решения к точному.

7.4.2. МЕТОД ДИФФЕРЕНЦИАЛЬНОЙ ПРОГОНКИ

Отличие метода дифференциальной прогонки [42] от вышеизложенного метода стрельбы заключается в том, что решаются вспомогательные задачи Коши не для исходного дифференциального уравнения, а для других уравнений меньшего порядка. Рассмотрим его применение для решения линейной краевой задачи (7.3), (7.4).

Методика решения линейной краевой задачи

Первый случай: $\beta_0 \neq 0$.

Прямая прогонка. Решить две задачи Коши:

$$Z_1' = -Z_1^2 - p(x)Z_1 + q(x), \quad Z_1(a) = -\frac{\alpha_0}{\beta_0};$$

 $Z_2' = -Z_2 \cdot [Z_1 + p(x)] + f(x), \quad Z_2(a) = \frac{A}{\beta_0};$

относительно $Z_1(x)$ и $Z_2(x)$ на отрезке [a,b].

Обратная прогонка. Решить задачу Коши

$$y' = Z_1(x)y + Z_2(x), \quad a \le x \le b; \quad y(b) = \frac{B - \beta_1 Z_2(b)}{\alpha_1 + \beta_1 Z_1(b)}.$$

Второй случай: $\alpha_0 \neq 0$.

Прямая прогонка. Решить две задачи Коши:

$$u_1' = -u_1^2 q(x) + u_1 p(x) + 1, \quad a \le x \le b, \quad u_1(a) = -\frac{\beta_0}{\alpha_0};$$

$$u_2' = -u_1(x) \cdot [u_2 q(x) + f(x)], \quad a \le x \le b, \quad u_2(a) = \frac{A}{\alpha_0}.$$

Обратная прогонка. Решить задачу Коши

$$u_1(x)y' = y - u_2(x), \ a \le x \le b, \ y(b) = \frac{Bu_1(b) + \beta_1 u_2(b)}{\beta_1 + \alpha_1 u_1(b)}.$$

Обратная прогонка в обоих случаях дает приближенное решение исходной краевой задачи.

Пример 7.7. Найти приближенное решение краевой задачи

$$y'' + (x+1)y' - 2y = 2, 0 \le x \le 1;$$

 $y(0) - y'(0) = -1, y(1) = 4$

методом дифференциальной прогонки. При прямой и обратной прогонке использовать явный метод Эйлера с шагом h = 0.02.

 \square В поставленной краевой задаче a=0, b=1, p(x)=x+1, q(x)=2, f(x)=2, $\alpha_0=1, \, \beta_0=-1, \, A=-1, \, \alpha_1=1, \, \beta_1=0, \, B=4.$ Так как $\beta_0\neq 0$, воспользуемся соотношениями для первого случая.

Таблица 7.6

Значения аргумента	Прямая	Обратная прогонка		
x_i	$\hat{Z}_1(x_i)$	$\hat{Z}_2(x_i)$	$\hat{y}(x_i)$	
0,0	1,000000	1,000000	0,9856163	
0,1	0,996238	0,996238	1,196328	
0,2	0,984706	0,984706	1,427262	
0,3	0,967711	0,967711	1,678383	
0,4	0,947030	0,947030	1,949667	
0,5	0,924000	0,924000	2,241091	
0,6	0,899611	0,899611	2,552642	
0,7	0,574584	0,574584	2,884312	
0,8	0,849434	0,849434	3,236095	
0,9	0,824526	0,824526	3,607991	
1,0	0,8001108	0,8001108	4,000000	

На этапе прямой прогонки решим две задачи Коши на отрезке [0; 1]:

$$Z_1' = -Z_1^2 - Z_1(x+1) + 2$$
, $Z_1(0) = -\frac{\alpha_0}{\beta_0} = -\frac{1}{-1} = 1$;
 $Z_2' = -Z_2 \cdot [Z_1 + x + 1] + 2$, $Z_2(0) = \frac{A}{\beta_0} = \frac{-1}{-1} = 1$.

На этапе обратной прогонки решим задачу Коши

$$y' = Z_1(x)y + Z_2(x), \quad 0 \le x \le 1, \quad y(1) = \frac{B - \beta_1 Z_2(b)}{\alpha_1 + \beta_1 Z_1(b)} = \frac{4 - 0}{1 + 0} = 4.$$

Результаты вычислений представлены в таблице 7.6 (в целях экономии места численные значения приведены в точках, отстоящих друг от друга на 0,1).

Если при прямой прогонке использовать явный метод Эйлера с шагом h=0,01, а при обратной — метод Эйлера — Коши, получается более точное решение [42].

7.5. МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ

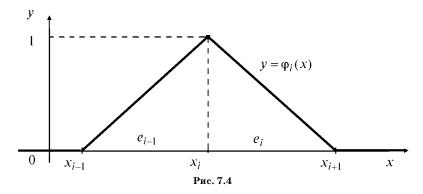
Метод конечных элементов нашел широкое практическое применение при решении уравнений с частными производными. Здесь описывается его применение к решению линейной краевой задачи (7.3), (7.4) для обыкновенного дифференциального уравнения, в которой искомая функция зависит от одной переменной.

Суть метода конечных элементов заключается в следующем:

- а) область определения функции y(x), удовлетворяющей дифференциальному уравнению и краевым условиям, разбивается на конечное число подобластей, называемых конечными элементами;
- б) в каждом элементе фиксируется конечное число *узловых точек*, общих с узловыми точками соседних элементов, в которых должны быть найдены узловые значения искомой функции;
- в) искомая функция на каждом элементе аппроксимируется линейной комбинацией базисных функций с коэффициентами, равными узловым значениям искомой функции;
- г) для нахождения коэффициентов применяется метод взвешенных невязок (метод Галеркина).

Разобьем отрезок [a, b] на n конечных элементов (в рассматриваемой задаче ими являются отрезки) $e_1, ..., e_n$ с (n+1) нумерованными узлами $x_1, x_2, ..., x_{n+1}$ (рис. 7.3).

$$e_1$$
 e_{i-1} e_i e_n x_{i+1} x_{i+1



Каждому нумерованному узлу x_i , $i = \overline{1, n+1}$, поставим в соответствие кусочно-линейную *глобальную базисную функцию* $\varphi_i(x)$, принимающую в данном узле значение единица, а в остальных — нулевое значение (рис. 7.4):

$$\phi_{i}(x) = \begin{cases}
\frac{x - x_{i-1}}{x_{i} - x_{i-1}}, & x_{i-1} \leq x \leq x_{i}, \\
\frac{x_{i+1} - x}{x_{i+1} - x_{i}}, & x_{i} \leq x \leq x_{i+1}, & i = \overline{1, n+1}. \\
0, & x < x_{i-1} & \text{или } x > x_{i+1},
\end{cases} (7.30)$$

Для обеспечения унифицированного определения глобальных базисных функций необходимо ввести в рассмотрение дополнительные узлы x_0 и x_{n+2} . Тогда глобальные базисные функции $\phi_1(x)$, $\phi_{n+1}(x)$ будут определены на отрезках $[x_0, x_2]$ и $[x_n, x_{n+2}]$ соответственно. Значения функций $\phi_1(x)$, $\phi_{n+1}(x)$ на отрезках $[x_0, x_1]$ и $[x_{n+1}, x_{n+2}]$, примыкающих к отрезку [a, b], в дальнейших расчетах не используются.

Используя глобальные базисные функции, будем искать решение краевой задачи в виде

$$\hat{y}(x) = \sum_{i=1}^{n+1} \hat{y}_i \cdot \varphi_i(x), \tag{7.31}$$

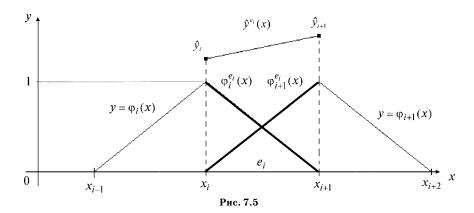
где \hat{y}_i — значения искомой функции в узлах $x_i,\ i=\overline{1,n+1}$ (коэффициенты).

Требуется найти такие значения \hat{y}_i , $i = \overline{1, n+1}$, чтобы выполнялось условие (7.23) (см. метод Галеркина в п. 7.3).

 Φ ункция, аппроксимирующая искомое решение на каждом конечном элементе, называется ϕ ункцией элемента.

Для элемента e_i с узлами x_i и x_{i+1} определим локальные базисные функции (рис. 7.5):

$$\varphi_{i}^{e_{i}}(x) = \frac{x_{i+1} - x}{x_{i+1} - x_{i}}, \quad x_{i} \le x \le x_{i+1};
\varphi_{i+1}^{e_{i}}(x) = \frac{x - x_{i}}{x_{i+1} - x_{i}}, \quad x_{i} \le x \le x_{i+1},$$
(7.32)



где нижний индекс у базисной функции соответствует номеру узла, а верхний — номеру конечного элемента. На каждом элементе e_i , $i=\overline{1,n}$, обе локальные базисные функции линейны, причем в узлах этого элемента одна из них равна единице, т. е. $\varphi_i^{e_i}(x_i)=1$ и $\varphi_{i+1}^{e_i}(x_{i+1})=1$. Функция элемента e_i может быть выражена с помощью локальных базисных функций и узловых значений \hat{y}_i и \hat{y}_{i+1} по формуле

$$\hat{y}^{e_i}(x) = \begin{cases} \hat{y}_i \cdot \varphi_i^{e_i}(x) + \hat{y}_{i+1} \cdot \varphi_{i+1}^{e_i}(x), & x_i \le x \le x_{i+1}; \ i = \overline{1, n}, \\ 0, & x < x_i \text{ или } x > x_{i+1}. \end{cases}$$
(7.33)

Тогда приближенное решение (7.31) краевой задачи можно представить в форме

$$\hat{y}(x) = \sum_{i=1}^{n} \hat{y}^{e_i}(x). \tag{7.34}$$

В силу свойств локальных базисных функций на элементе e_i функция элемента является линейной и принимает в узле x_i значение \hat{y}_i , а в узле x_{i+1} значение \hat{y}_{i+1} (рис. 7.5). Если в краевой задаче заданы условия первого рода, т. е. y(a) = A, y(b) = B, то при рассмотрении элемента e_1 следует положить $\hat{y}_1 = A$, так как $x_1 = a$, а при рассмотрении элемента e_n положить $\hat{y}_{n+1} = B$,

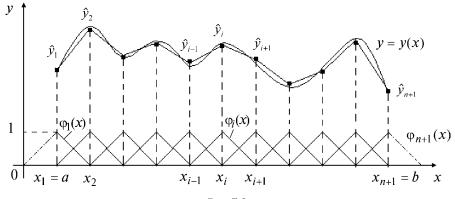


Рис. 7.6

поскольку $x_{n+1} = b$. Тогда краевые условия первого рода для решения, записанного в виде (7.31) или эквивалентном ему (7.34), выполняются автоматически. Для учета условий второго и третьего рода применяется обобщенный подход (см. пример 7.8). В целом аппроксимация (7.31) является кусочнолинейной. На рисунке 7.6 показано применение формулы (7.31) для аппроксимации некоторой произвольной функции y = y(x).

Рассмотрим некоторые теоретические аспекты применения метода конечных элементов на типовом примере линейной краевой задачи с краевыми условиями первого рода.

Пример 7.8. Найти приближенное решение краевой задачи

$$y'' - y = 0$$
, $0 \le x \le 1$;
 $y(0) = 0$, $y(1) = 1$

методом конечных элементов, полагая число конечных элементов, равным трем. $\square B$ поставленной задаче $a=0, b=1, p(x)\equiv 0, q(x)=1, f(x)\equiv 0, \alpha_0=1, \beta_0=0, A=0, \alpha_1=1, \beta_1=0, B=1.$ Точное решение этой задачи (см. пример 7.1):

$$y(x) = \frac{e}{e^2 - 1}e^x + \frac{e}{1 - e^2}e^{-x}$$
.

Применим метод Галеркина. Для этого запишем условие (7.23):

$$\int_{0}^{1} [\hat{y}''(x) - \hat{y}(x)] \cdot \varphi_{j}(x) dx = 0, \quad j = \overline{1, n+1}.$$
 (7.35)

Заметим, что базисные функции непрерывны, но в силу кусочной линейности имеют разрывные производные, а при использовании метода Галеркина для дифференциального уравнения второго порядка требуется, чтобы подынтегральные выражения в (7.35) были по крайней мере кусочно-непрерывны. Поэтому рассмотрим так называемую слабую формулировку метода Галеркина, в которой требования, предъявляемые к базисным функциям, ослабляются.

Проинтегрируем по частям первое слагаемое в (7.35):

$$\int_{0}^{1} \hat{y}''(x) \cdot \varphi_{j}(x) dx = \varphi_{j}(x) \frac{d\hat{y}(x)}{dx} \bigg|_{0}^{1} - \int_{0}^{1} \frac{d\hat{y}(x)}{dx} \cdot \frac{d\varphi_{j}(x)}{dx} dx.$$

Тогда (7.35) запишется в форме

$$-\int_{0}^{1} \left[\frac{d\hat{y}(x)}{dx} \cdot \frac{d\varphi_{j}(x)}{dx} + \hat{y}(x) \cdot \varphi_{j}(x) \right] dx + \varphi_{j}(x) \frac{d\hat{y}(x)}{dx} \Big|_{0}^{1} = 0.$$
 (7.36)

Из (7.36) видно, что теперь достаточно, чтобы базисные функции $\varphi_i(x)$ принадлежали классу C([0;1]) непрерывных функций.

Задача заключается в следующем: требуется найти такой вектор $\hat{y} = (\hat{y}_1, ..., \hat{y}_{n+1})^T$, чтобы функция (7.31) удовлетворяла условию (7.36). В этом заключается слабая формулировка метода Галеркина.

Для решения задачи подставим (7.31) в (7.36):

$$\int_{0}^{1} \left[\frac{d\sum_{i=1}^{n+1} \hat{y}_{i} \cdot \varphi_{i}(x)}{dx} \cdot \frac{d\varphi_{j}(x)}{dx} + \varphi_{j}(x) \cdot \sum_{i=1}^{n+1} \hat{y}_{i} \cdot \varphi_{i}(x) \right] dx = \varphi_{j}(x) \cdot \frac{d\sum_{i=1}^{n+1} \hat{y}_{i} \cdot \varphi_{i}(x)}{dx} \bigg|_{0}^{1}. \quad (7.37)$$

Полученное равенство запишем в матричной форме:

$$K\hat{y} = f, \tag{7.38}$$

где K — матрица размеров $(n+1) \times (n+1)$, элемент которой определяется по формуле

$$K_{j,i} = \int_{0}^{1} \left[\frac{d\varphi_{j}(x)}{dx} \cdot \frac{d\varphi_{i}(x)}{dx} + \varphi_{j}(x) \cdot \varphi_{i}(x) \right] dx, \quad j = \overline{1, n+1}, \quad i = \overline{1, n+1}, \quad (7.39)$$

а $f = (f_1, ..., f_{n+1})^T$ — вектор, компоненты которого находятся следующим образом:

$$f_{j} = \varphi_{j}(x) \cdot \frac{d \sum_{i=1}^{n+1} \hat{y}_{i} \cdot \varphi_{i}(x)}{dx} \bigg| 1, \quad j = \overline{1, n+1}.$$
 (7.40)

Проанализируем вклад элемента e_i с узлами x_i , x_{i+1} (см. рис. 7.5). Единственными отличными от нуля глобальными базисными функциями для элемента e_i будут $\varphi_i(x)$ и $\varphi_{i+1}(x)$. Поэтому будем использовать соответствующие локальные базисные функции $\varphi_i^{e_i}(x)$, $\varphi_{i+1}^{e_i}(x)$. С учетом (7.32) и (7.39) определим элементы матрицы конечного элемента e_i :

$$K_{i,i}^{e_{i}} = \int_{x_{i}}^{x_{i+1}} \left[\left(\frac{d\varphi_{i}^{e_{i}}(x)}{dx} \right)^{2} + \left(\varphi_{i}^{e_{i}}(x) \right)^{2} \right] dx;$$

$$K_{i+1,i}^{e_{i}} = \int_{x_{i}}^{x_{i+1}} \left[\frac{d\varphi_{i+1}^{e_{i}}(x)}{dx} \cdot \frac{d\varphi_{i}^{e_{i}}(x)}{dx} + \varphi_{i+1}^{e_{i}}(x) \cdot \varphi_{i}^{e_{i}}(x) \right] dx;$$

$$K_{i+1,i+1}^{e_{i}} = \int_{x_{i}}^{x_{i+1}} \left[\left(\frac{d\varphi_{i+1}^{e_{i}}(x)}{dx} \right)^{2} + \left(\varphi_{i+1}^{e_{i}}(x) \right)^{2} \right] dx = K_{i,i}^{e_{i}};$$

$$K_{i,i+1}^{e_{i}} = \int_{x_{i}}^{x_{i+1}} \left[\frac{d\varphi_{i}^{e_{i}}(x)}{dx} \cdot \frac{d\varphi_{i+1}^{e_{i}}(x)}{dx} + \varphi_{i}^{e_{i}}(x) \cdot \varphi_{i+1}^{e_{i}}(x) \right] dx = K_{i+1,i}^{e_{i}}.$$
(7.41)

В результате можно записать матрицу элемента e_i в форме

$$K^{i} = \begin{pmatrix} 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \dots & K_{i,i}^{e_{i}} & K_{i,i+1}^{e_{i}} & \dots & 0 \\ 0 & \dots & K_{i+1,i}^{e_{i}} & K_{i+1,i+1}^{e_{i}} & \dots & 0 \\ \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}.$$
(7.42)

Матрица K системы (7.38) получается суммированием матриц K^i , $i = \overline{1, n}$. Этот процесс называется ансамблированием элементов.

Алгоритм применения метода конечных элементов для решения линейных краевых задач

- 1. Разбить отрезок [a, b] на n конечных элементов $e_1, ..., e_n$ и представить решение в виде (7.31).
- 2. Для каждого конечного элемента составить матрицу K^i , $i=\overline{1,n}$, по формуле (7.42), элементы которой вычисляются согласно (7.41).
- 3. Сформировать матрицу K в результате суммирования матриц K^i , вектор f с учетом (7.40) и составить систему (7.38).
- 4. Учесть краевые условия и решить систему (7.38). В результате найти значения $\hat{y}_1, ..., \hat{y}_{n+1}$ и выписать приближенное решение по формуле (7.31).

Теперь применим описанную методику к решению поставленной задачи.

1. Положим n=3 при равномерной сетке. Тогда

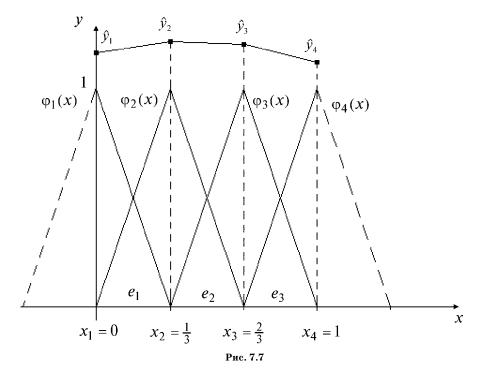
$$h = x_{i+1} - x_i = \frac{1}{3} = \text{const},$$

а глобальные базисные функции, определяемые по формулам (7.30), изображены на рисунке 7.7.

Решение задачи ищется в форме

$$\hat{y}(x) = \hat{y}_1 \cdot \varphi_1(x) + \hat{y}_2 \cdot \varphi_2(x) + \hat{y}_3 \cdot \varphi_3(x) + \hat{y}_4 \cdot \varphi_4(x), \tag{7.43}$$

где $\hat{y}_1,~\hat{y}_2,~\hat{y}_3,~\hat{y}_4$ подлежат определению.



2. Составим матрицу K^i для каждого элемента $e_1,\,e_2,\,e_3.$ С этой целью вычислим отдельные элементы матрицы по формулам (7.41). Для конечного элемента e_1 получим

$$K_{1,1}^{e_1} = \int_{x_1}^{x_2} \left[\left(\frac{d\varphi_1^{e_1}(x)}{dx} \right)^2 + \left(\varphi_1^{e_1}(x) \right)^2 \right] dx = \int_{0}^{\frac{1}{3}} \left[\frac{d}{dx} \left(\frac{x_2 - x}{x_2 - x_1} \right) \right]^2 + \left(\frac{x_2 - x}{x_2 - x_1} \right)^2 \right] dx = \int_{0}^{\frac{1}{3}} \left[9 + 9 \cdot \left(\frac{1}{3} - x \right)^3 \right] dx = \left[9x - 9 \cdot \left(\frac{1}{3} - x \right)^3 \right] \left[\frac{1}{3} - \frac{28}{9} \right] dx = \int_{0}^{\frac{1}{3}} \left[\frac{d\varphi_1^{e_1}(x)}{dx} \cdot \frac{d\varphi_2^{e_1}(x)}{dx} + \varphi_1^{e_1}(x) \cdot \varphi_2^{e_1}(x) \right] dx = \int_{0}^{\frac{1}{3}} \left[\frac{d}{dx} \left(\frac{x_2 - x}{x_2 - x_1} \right) \cdot \frac{d}{dx} \left(\frac{x - x_1}{x_2 - x_1} \right) + \frac{x_2 - x}{x_2 - x_1} \cdot \frac{x - x_1}{x_2 - x_1} \right] dx = \int_{0}^{\frac{1}{3}} \left[-3 \cdot 3 + 9 \cdot \left(\frac{1}{3} - x \right) (x - 0) \right] dx = -\frac{53}{18} \right] dx = \int_{0}^{\frac{1}{3}} \left[-3 \cdot 3 + 9 \cdot \left(\frac{1}{3} - x \right) (x - 0) \right] dx = -\frac{53}{18} \right] dx$$

Здесь нижние индексы соответствуют связям узлов для элемента, указанного в верхнем индексе.

В результате для конечного элемента e_1 получаем

Так как сетка равномерная, дифференциальное уравнение с постоянными коэффициентами и базисные функции «одинаковые», то для конечных элементов e_2 , e_3 в решаемой задаче аналогично имеем

3. Складывая матрицы элементов $e_1,\,e_2,\,e_3,\,$ находим результат ансамблирования:

$$K = \begin{pmatrix} \frac{28}{9} & -\frac{53}{18} & 0 & 0\\ -\frac{53}{18} & \frac{56}{9} & -\frac{53}{18} & 0\\ 0 & -\frac{53}{18} & \frac{56}{9} & -\frac{53}{18}\\ 0 & 0 & -\frac{53}{18} & \frac{28}{9} \end{pmatrix}.$$

По формуле (7.40) с учетом (7.43) определим компоненты вектора f правой части системы (7.38):

$$\begin{split} &f_1 = \phi_1(x) \cdot \frac{d\hat{y}(x)}{dx} \bigg| \begin{matrix} 1 \\ 0 \end{matrix} = -\frac{d\hat{y}(x)}{dx} \bigg|_{x = 0}, \text{ поскольку } \phi_1(1) = 0, \ \phi_1(0) = 0; \\ &f_2 = \phi_2(x) \cdot \frac{d\hat{y}(x)}{dx} \bigg|_0^1 = 0, \text{ так как } \phi_2(1) = 0, \ \phi_2(0) = 0; \\ &f_3 = \phi_3(x) \cdot \frac{d\hat{y}(x)}{dx} \bigg|_0^1 = 0, \text{ так как } \phi_3(1) = 0, \ \phi_3(0) = 0; \\ &f_4 = \phi_4(x) \cdot \frac{d\hat{y}(x)}{dx} \bigg|_0^1 = \frac{d\hat{y}(x)}{dx} \bigg|_{x = 1}, \text{ поскольку } \phi_4(1) = 0, \ \phi_4(0) = 0. \end{split}$$

С учетом полученных результатов запишем систему (7.38):

$$\begin{pmatrix}
\frac{28}{9} & -\frac{53}{18} & 0 & 0 \\
-\frac{53}{18} & \frac{56}{9} & -\frac{53}{18} & 0 \\
0 & -\frac{53}{18} & \frac{56}{9} & -\frac{53}{18} \\
0 & 0 & -\frac{53}{18} & \frac{28}{9}
\end{pmatrix}
\cdot
\begin{pmatrix}
\hat{y}_1 \\
\hat{y}_2 \\
\hat{y}_3 \\
\hat{y}_4
\end{pmatrix} = \begin{pmatrix}
-\frac{d\hat{y}(x)}{dx} \\
0 \\
0 \\
\frac{d\hat{y}(x)}{dx} \\
x = 1
\end{pmatrix}.$$
(7.44)

Из краевых условий y(0)=0, y(1)=1 следует, что $\hat{y}_1=y(0)=0$, $\hat{y}_4=y(1)=1$. Тогда в системе (7.44) можно исключить первое и четвертое уравнения, положив в остальных $\hat{y}_1=0$, $\hat{y}_4=1$. В итоге получим систему

$$\begin{pmatrix} \frac{56}{9} & -\frac{53}{18} \\ -\frac{53}{18} & \frac{56}{9} \end{pmatrix} \cdot \begin{pmatrix} \hat{y}_2 \\ \hat{y}_3 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{53}{18} \end{pmatrix}.$$

Отсюда $\hat{y}_2=0,2885; \ \hat{y}_3=0,6088.$ Точные значения $y(x_2)=y\Big(\frac{1}{3}\Big)=0,2889;$ $y(x_3)=y\Big(\frac{2}{3}\Big)=0,6102.$ Приближенное решение задачи имеет вид

$$\hat{y}(x) = 0.2885 \cdot \varphi_2(x) + 0.6088 \cdot \varphi_3(x) + \varphi_4(x)$$
.

Замечание. В случае краевых условий второго или третьего рода следует воспользоваться более общей схемой метода Галеркина с учетом невязки краевых условий, содержащих производные [47]. Например, рассмотрим задачу

$$y'' - y = 0$$
, $y(0) = 0$, $y'(1) = 1$.

Вместо (7.35) используем следующее условие:

$$\int_{0}^{1} [\hat{y}''(x) - \hat{y}(x)] \cdot \varphi_{j}(x) dx + [\hat{y}'(1) - 1] \cdot \tilde{\varphi}_{j}(1) = 0, \quad j = \overline{1, n+1},$$
 (7.45)

где $\tilde{\varphi}_j(x)$, $j=\overline{1,n+1}$, — весовые функции, задаваемые в общем случае независимо от функций $\varphi_j(x)$, $j=\overline{1,n+1}$. Как и ранее, краевое условие первого рода на левом конце может быть выполнено автоматически.

Далее интегрируем по частям:

$$-\int_{0}^{1}\left[\frac{d\hat{y}(x)}{dx}\cdot\frac{d\varphi_{j}(x)}{dx}+\hat{y}(x)\cdot\varphi_{j}(x)\right]dx+\varphi_{j}(x)\frac{d\hat{y}(x)}{dx}\bigg|_{0}^{1}+\left[\tilde{\varphi}_{j}(x)\cdot\left(\frac{d\hat{y}(x)}{dx}-1\right)\right]\bigg|_{x=1}=0.$$

Базисные функции $\tilde{\varphi}_j(x)$, $j=\overline{1,n+1}$, следует подбирать так, чтобы члены, содержащие краевые условия с производными, и члены с производными первого порядка, возникающими в той же точке в процессе интегрирования по частям, уничтожились.

Положим $\tilde{\varphi}_j(x) = -\varphi_j(x)$, $j = \overline{1, n+1}$. Тогда имеем

$$\int_{0}^{1} \left[\frac{d\hat{y}(x)}{dx} \cdot \frac{d\varphi_{j}(x)}{dx} + \hat{y}(x) \cdot \varphi_{j}(x) \right] dx = -\varphi_{j}(x) \frac{d\hat{y}(x)}{dx} \Big|_{x=0} + \varphi_{j}(1), \quad j = \overline{1, n+1}.$$

Полагая n=3 и рассуждая аналогично случаю краевых условий первого рода с учетом равенств $\varphi_1(0)=1$, $\varphi_2(0)=0$, $\varphi_3(0)=0$, $\varphi_4(0)=0$, $\varphi_1(1)=0$, $\varphi_2(1)=0$, $\varphi_3(1)=0$, $\varphi_4(1)=1$, получаем систему

$$\begin{pmatrix} \frac{28}{9} & -\frac{53}{18} & 0 & 0 \\ -\frac{53}{18} & \frac{56}{9} & -\frac{53}{18} & 0 \\ 0 & -\frac{53}{18} & \frac{56}{9} & -\frac{53}{18} \\ 0 & 0 & -\frac{53}{18} & \frac{28}{9} \end{pmatrix} \cdot \begin{pmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \hat{y}_4 \end{pmatrix} = \begin{pmatrix} -\frac{d\hat{y}(x)}{dx} \Big|_{x=0} \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Краевое условие y(0) = 0 на левом конце учитывается вычеркиванием первого уравнения и приравниванием $\hat{y}_1 = 0$ в остальных уравнениях.

Задачи для самостоятельного решения

1. Решить краевую задачу

$$y'' + y = -x; x \in [0; 1];$$

 $y(0) = 0; y'(1) = 0$

методом Галеркина. Аппроксимирующую функцию принять в виде

$$\hat{y}_2(x) = a_1 x + a_2 x^2$$
 $(\varphi_1(x) = x, \varphi_2(x) = x^2).$

Указание. Данная функция тождественно удовлетворяет условию на левой границе. На правой границе необходимо использовать взвешенную невязку с весовыми функциями $\tilde{\varphi}_1(x) = -x$, $\tilde{\varphi}_2(x) = -x^2$.

2. Решить краевую задачу

$$y'' - y = 0; x \in [0; 1];$$

 $y(0) = 0; y(1) = 1$

методом коллокации и методом Галеркина. Аппроксимирующую функцию принять в виде $\hat{y}_m(x) = x + \sum_{j=1}^m a_j \sin j\pi x$, удовлетворяющем краевым условиям задачи.

3. Решить краевую задачу

$$y'' + y + x = 0; x \in [0; 1];$$

 $y(0) = 0, y'(1) = 0$

методом Галеркина. Аппроксимирующую функцию принять в виде

$$\hat{y}_1(x) = \alpha_1 x \cdot \left(1 - \frac{x}{2}\right)$$
, где $\phi_1(x) = x \left(1 - \frac{x}{2}\right)$,

удовлетворяющем краевым условиям.

4. Решить краевую задачу

$$y'' + y + kx = 0; x \in [0; 1];$$

$$y(0) = 0, y(1) = 1 - k, k = 1 - N_1 \cdot 0,001 \cdot N_2,$$

где N_1 — номер группы; N_2 — номер студента по списку. Указание. Принимая аппроксимирующую функцию в виде

$$\hat{y}_3(x) = x(1-kx)\cdot (a_1 + a_2x + a_3x^2),$$

найти приближенное решение задачи методом Галеркина. Полученное решение сравнить с точным решением $y(x) = \frac{\sin x}{\sin 1} - kx$.

5. Методом конечных элементов, разбивая [a, b] = [0; 1 - N] на 3, 6 и 12 элементов, решить краевую задачу

$$y'' + y = 0;$$

 $y(0) = 0; \frac{dy}{dx}\Big|_{x=1,N} = \text{ctg}(1-N),$

где $N=N'\cdot N^0\cdot 0,001,\ N'$ — номер группы; N^0 — номер студента в группе. Приближенные решения сравнить с точным решением $y(x)=\frac{\sin x}{\sin(1-N)}$.

6. Методом конечных элементов решить краевую задачу

$$y'' - y = 0; x \in [0; 1];$$

 $y(0) = 0, y(1) = 1,$

используя четыре конечных элемента. Полученное решение сравнить с точным решением $y(x) = \frac{\sinh x}{\sinh 1}$.

7. Методом конечных элементов решить краевую задачу

$$y'' - y = 0; x \in [0; 1];$$

 $y'(0) = \frac{1}{\sinh 1}, y'(1) = 1,$

разбивая отрезок $\Omega = [0;1]$ на 3 и 4 элемента. Результаты сравнить с точным решением задачи.